Dynamic site-specific recruitment of RBP2 by pocket protein p130 modulates H3K4 methylation on E2F-responsive promoters
نویسندگان
چکیده
The Histone 3 lysine 4 methylation (H3K4me3) mark closely correlates with active transcription. E2F-responsive promoters display dynamic changes in H3K4 methylation during the course of cell cycle progression. However, how and when these marks are reset, is not known. Here we show that the retinoblastoma binding protein RBP2/KDM5A, capable of removing tri-methylation marks on H3K4, associates with the E2F4 transcription factor via the pocket protein-p130-in a cell-cycle-stage specific manner. The association of RBP2 with p130 is LxCxE motif dependent. RNAi experiments reveal that p130 recruits RBP2 to E2F-responsive promoters in early G1 phase to bring about H3K4 demethylation and gene repression. A point mutation in LxCxE motif of RBP2 renders it incapable of p130-interaction and hence, repression of E2F-regulated gene promoters. We also examine how RBP2 may be recruited to non-E2F responsive promoters. Our studies provide insight into how the chromatin landscape needs to be adjusted rapidly and periodically during cell-cycle progression, concomitantly with temporal transcription, to bring about expression/repression of specific gene sets.
منابع مشابه
E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex.
Despite biochemical and genetic data suggesting that E2F and pRB (pocket protein) families regulate transcription via chromatin-modifying factors, the precise mechanisms underlying gene regulation by these protein families have not yet been defined in a physiological setting. In this study, we have investigated promoter occupancy in wild-type and pocket protein-deficient primary cells. We show ...
متن کاملE2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases.
E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with ...
متن کاملThe p130 pocket protein: keeping order at cell cycle exit/re-entrance transitions.
Pocket proteins, including the retinoblastoma susceptibility gene product (pRB) and the related proteins p107 and p130, function at cell cycle regulatory steps that link cyclin/CDK-integrated positive and negative growth signals with E2F transcription factor activity on genes required for cell cycle progression. Protein complex formation between pocket proteins and members of the E2F family of ...
متن کاملThe Retinoblastoma Binding Protein RBP2 Is an H3K4 Demethylase
Changes in histone methylation status regulate chromatin structure and DNA-dependent processes such as transcription. Recent studies indicate that, analogous to other histone modifications, histone methylation is reversible. Retinoblastoma binding protein 2 (RBP2), a nuclear protein implicated in the regulation of transcription and differentiation by the retinoblastoma tumor suppressor protein,...
متن کاملRb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes
The mammalian heart loses its regenerative potential soon after birth. Adult cardiac myocytes (ACMs) permanently exit the cell cycle, and E2F-dependent genes are stably silenced, although the underlying mechanism is unclear. Heterochromatin, which silences genes in many biological contexts, accumulates with cardiac differentiation. H3K9me3, a histone methylation characteristic of heterochromati...
متن کامل